Rxivist logo

Bioorthogonal red and far-red fluorogenic probes for wash-free live-cell and super-resolution microscopy

By Philipp Werther, Klaus Yserentant, Felix Braun, Kristin S. Grussmayer, Vytautas Navikas, Miao Yu, Zhibin Zhang, Michael J. Ziegler, Christoph Mayer, Antoni J. Gralak, Marvin Busch, Weijie Chi, Frank Rominger, Aleksandra Radenovic, Xiaogang Liu, Edward A Lemke, Tiago Buckup, Dirk-Peter Herten, Richard Wombacher

Posted 07 Aug 2020
bioRxiv DOI: 10.1101/2020.08.07.241687

Small-molecule fluorophores enable the observation of biomolecules in their native context with fluorescence microscopy. Specific labelling via bioorthogonal tetrazine chemistry confers minimal label size and rapid labelling kinetics. At the same time, fluorogenic tetrazine-dye conjugates exhibit efficient quenching of dyes prior to target binding. However, live-cell compatible long-wavelength fluorophores with strong fluorogenicity have been difficult to realize. Here, we report close proximity tetrazine-dye conjugates with minimal distance between tetrazine and fluorophore. Two synthetic routes give access to a series of cell permeable and impermeable dyes including highly fluorogenic far-red emitting derivatives with electron exchange as dominant excited state quenching mechanism. We demonstrate their potential for live-cell imaging in combination with unnatural amino acids, wash-free multi-colour and super-resolution STED and SOFI imaging. These dyes pave the way for advanced fluorescence imaging of biomolecules with minimal label size. ### Competing Interest Statement The authors have declared no competing interest.

Download data

  • Downloaded 1,064 times
  • Download rankings, all-time:
    • Site-wide: 21,934
    • In cell biology: 746
  • Year to date:
    • Site-wide: 13,932
  • Since beginning of last month:
    • Site-wide: 15,342

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide