Rxivist logo

We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities. ### Competing Interest Statement J.D.E. is a co-founder of TEGA Therapeutics. J.D.E. and The Regents of the University of California have licensed a University invention to and have an equity interest in TEGA Therapeutics. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. C.A.G and B.E.T are employees of TEGA Therapeutics.

Download data

  • Downloaded 2,447 times
  • Download rankings, all-time:
    • Site-wide: 4,512 out of 118,977
    • In microbiology: 255 out of 9,394
  • Year to date:
    • Site-wide: 2,121 out of 118,977
  • Since beginning of last month:
    • Site-wide: 3,781 out of 118,977

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News