Refining fine-mapping: effect sizes and regional heritability
By
Christian Benner,
Aki S Havulinna,
Veikko Salomaa,
Samuli Ripatti,
Matti Pirinen
Posted 10 May 2018
bioRxiv DOI: 10.1101/318618
Recent statistical approaches have shown that the set of all available genetic variants explains considerably more phenotypic variance of complex traits and diseases than the individual variants that are robustly associated with these phenotypes. However, rapidly increasing sample sizes constantly improve detection and prioritization of individual variants driving the associations between genomic regions and phenotypes. Therefore, it is useful to routinely estimate how much phenotypic variance the detected variants explain for each region by taking into account the correlation structure of variants and the uncertainty in their causal status. Here we extend the FINEMAP software to estimate the effect sizes and regional heritability under the probabilistic model that assumes a handful of causal variants per each region. Using the UK Biobank data to simulate GWAS regions with only a few causal variants, we demonstrate that FINEMAP provides higher precision and enables more detailed decomposition of regional heritability into individual variants than the variance component model implemented in BOLT or the fixed-effect model implemented in HESS. Using data from 51 serum biomarkers and four lipid traits from the FINRISK study, we estimate that FINEMAP captures on average 24% more regional heritability than the variant with the lowest P-value alone and 20% less than BOLT. Our simulations suggest how an upward bias of BOLT and a downward bias of FINEMAP could together explain the observed difference between the methods. We conclude that FINEMAP enables computationally efficient estimation of effect sizes and regional heritability in the era of biobank scale data.
Download data
- Downloaded 1,416 times
- Download rankings, all-time:
- Site-wide: 11,697
- In genetics: 584
- Year to date:
- Site-wide: 34,824
- Since beginning of last month:
- Site-wide: 38,552
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!