Rxivist logo

Binding Ability Prediction between Spike Protein and Human ACE2 Reveals the Adaptive Strategy of SARS-CoV-2 in Humans

By Xia Xue, Jianxiang Shi, Hongen Xu, Yaping Qin, Zengguang Yang, Shuaisheng Feng, Danhua Liu, Liguo Jian, Linlin Hua, Yaohe Wang, Qi Zhang, Xueyong Huang, Xiaoju Zhang, Xinxin Li, Chunguang Chen, Jiancheng Guo, Wenxue Tang, Jianbo Liu

Posted 27 Jun 2020
bioRxiv DOI: 10.1101/2020.06.25.170704

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus causing an outbreak of COVID-19 globally in the past six months. A relatively higher divergence on the spike protein of SASR-CoV-2 enables it to transmit across species efficiently. We particularly believe that the adaptive mutations of the receptor-binding domain (RBD) of spike protein in SARS-CoV-2 might be essential to its high transmissibility among humans. Thus here we collected 2,142 high-quality genome sequences of SARS-CoV-2 from 160 regions in over 50 countries and reconstructed their phylogeny, and also analyzed the interaction between the polymorphisms of spike protein and human ACE2 (hACE2). Phylogenetic analysis of SARS-CoV-2 and coronavirus in other hosts show SARS-CoV-2 is highly possible originated from Bat-CoV (RaTG13) found in horseshoe bat and a recombination event may occur on the spike protein of Pangolin-CoV to imbue it the ability to infect humans. Moreover, compared to the S gene of SARS-CoV-2, it is more conserved in the direct-binding sites of RBD and we noticed that spike protein of SARS-CoV-2 may under a consensus evolution to adapt to human hosts better. 3,860 amino acid mutations in spike protein RBD (T333-C525) of SARS-CoV-2 were simulated and their stability and affinity binding to hACE2 (S19-D615) were calculated. Our analysis indicates SARS-CoV-2 could infect humans from different populations with no preference, and a higher divergence in the spike protein of SARS-CoV-2 at the early stage of this pandemic may be a good indicator that could show the pathway of SARS-CoV-2 transmitting from the natural reservoir to human beings.

Download data

  • Downloaded 490 times
  • Download rankings, all-time:
    • Site-wide: 58,837
    • In microbiology: 3,797
  • Year to date:
    • Site-wide: 69,006
  • Since beginning of last month:
    • Site-wide: 65,875

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide