Rxivist logo

MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies

By Arjun Bhattacharya, Yun Li, Michael I. Love

Posted 18 Apr 2020
bioRxiv DOI: 10.1101/2020.04.17.047225

Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites, microRNAs, and transcription factors) highly associated with gene expression and train predictive models for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the final predictive model of gene expression, along with local SNPs. In the second extension, we assess distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation effects are then included in the transcriptomic prediction model with the local SNPs around the gene of interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show considerable gains of percent variance explained (1-2% additive increase) of gene expression and TWAS power to detect gene-trait associations. This integrative approach to transcriptome-wide imputation and association studies aids in identifying the complex interactions underlying genetic regulation within a tissue and important risk genes for various traits and disorders. ### Competing Interest Statement The authors have declared no competing interest.

Download data

  • Downloaded 985 times
  • Download rankings, all-time:
    • Site-wide: 21,304
    • In genetics: 1,022
  • Year to date:
    • Site-wide: 27,874
  • Since beginning of last month:
    • Site-wide: 39,344

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)