Rxivist logo

Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: applying a data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research,to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2,835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. Two of these - one associated with eating disorder and the other with anxiety - remained significant in an independent dataset after robust correction for multiple testing, showing considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively). Our approach may help detect novel specific genotype-phenotype relationships in BD typically not explored by analyses like GWAS. While we adapted the data mining tool within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.

Download data

  • Downloaded 525 times
  • Download rankings, all-time:
    • Site-wide: 57,130
    • In genomics: 4,259
  • Year to date:
    • Site-wide: 117,860
  • Since beginning of last month:
    • Site-wide: 84,942

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide