Rxivist logo

ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming

By Fei Li, Qiuyue Yuan, Wei Di, Xinyi Xia, Zhuang Liu, Ninghui Mao, Lin Li, Chunfeng Li, Juan He, Yunguang Li, Wangxin Guo, Xiaoyu Zhang, Yiqin Zhu, Rebiguli Aji, Shangqian Wang, Ping Chi, Brett Carver, Yong Wang, Yu Chen, Dong Gao

Posted 05 Apr 2020
bioRxiv DOI: 10.1101/2020.04.03.024349 (published DOI: 10.1172/JCI137967)

While cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early stage prostate cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more differentiated secretory luminal cells. However, the mechanism of prostate cancer pro-luminal differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806 human prostate cancers, we have identified that ERG highly correlated with prostate cancer luminal subtyping. ERG overexpression in luminal epithelial cells inhibits its normal plasticity to transdifferentiate into basal lineage and ERG supersedes PTEN-loss which favors basal differentiation. ERG knock-out disrupted prostate cell luminal differentiation, whereas AR knock-out had no such effects. Trp63 is a known master regulator of prostate basal lineage. Through analysis of 3D chromatin architecture, we found that ERG binds and inhibits the enhancer activity and chromatin looping of a Trp63 distal enhancer, thereby silencing its gene expression. Specific deletion of the distal ERG binding site resulted in the loss of ERG-mediated inhibition of basal differentiation. Thus, ERG orchestrates chromatin interactions and regulates prostate cell lineage toward pro-luminal program, as its fundamental role on lineage differentiation in prostate cancer initiation.

Download data

  • Downloaded 491 times
  • Download rankings, all-time:
    • Site-wide: 37,401 out of 101,349
    • In cancer biology: 1,199 out of 3,636
  • Year to date:
    • Site-wide: 7,856 out of 101,349
  • Since beginning of last month:
    • Site-wide: 25,506 out of 101,349

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!