Rxivist logo

Massively parallel sequencing (MPS) on DNA nanoarrays provides billions of reads at relatively low cost and enables a multitude of genomic applications. Further improvement in read length, sequence quality and cost reduction will enable more affordable and accurate comprehensive health monitoring tests. Currently the most efficient MPS uses dye-labeled reversibly terminated nucleotides (RTs) that are expensive to make and challenging to incorporate. Furthermore, a part of the dye-linker (scar) remains on the nucleobase after cleavage and interferes with subsequent sequencing cycles. We describe here the development of a novel MPS chemistry (CoolMPS™) utilizing unlabeled RTs and four natural nucleobase-specific fluorescently labeled antibodies with fast (30 sec) binding. We implemented CoolMPS™ on MGI′s PCR-free DNBSEQ MPS platform using arrays of 200nm DNA nanoballs (DNBs) generated by rolling circle replication and demonstrate 3-fold improvement in signal intensity and elimination of scar interference. Single-end 100-400 base and pair-end 2x150 base reads with high quality were readily generated with low out-of-phase incorporation. Furthermore, DNBs with less than 50 template copies were successfully sequenced by strong-signal CoolMPS ™ with 3-times higher accuracy than in standard MPS. CoolMPS™ chemistry based on natural nucleobases has potential to provide longer, more accurate and less expensive MPS reads, including highly accurate ″4-color sequencing″ on the most efficient dye-crosstalk-free 2-color imagers with an estimated sequencing error rate of 0.00058% (one error in 170,000 base calls) in a proof-of-concept demonstration.

Download data

  • Downloaded 3,292 times
  • Download rankings, all-time:
    • Site-wide: 1,829 out of 100,957
    • In genomics: 358 out of 6,258
  • Year to date:
    • Site-wide: 467 out of 100,957
  • Since beginning of last month:
    • Site-wide: 2,939 out of 100,957

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!