Removing unwanted variation between samples in Hi-C experiments
By
Kipper Fletez-Brant,
Yunjiang Qiu,
David U. Gorkin,
Ming Hu,
Kasper D Hansen
Posted 06 Nov 2017
bioRxiv DOI: 10.1101/214361
Hi-C data is commonly normalized using single sample processing methods, with focus on comparisons between regions within a given contact map. Here, we aim to compare contact maps across different samples. We demonstrate that unwanted variation, of likely technical origin, is present in Hi-C data with replicates from different individuals, and that properties of this unwanted variation changes across the contact map. We present BNBC, a method for normalization and batch correction of Hi-C data and show that it substantially improves comparisons across samples, including in a QTL analysis as well as differential enrichment across cell types.
Download data
- Downloaded 1,349 times
- Download rankings, all-time:
- Site-wide: 13,435
- In genomics: 1,435
- Year to date:
- Site-wide: 13,634
- Since beginning of last month:
- Site-wide: 15,119
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!