Rxivist logo

The adaptive immune system is highly sensitive to arrayed antigens, and multivalent display of viral glycoproteins on symmetric scaffolds has been found to substantially increase the elicitation of antigen-specific antibodies. Motivated by the considerable promise of this strategy for next-generation anti-viral vaccines, we set out to design new self-assembling protein nanoparticles with geometries specifically tailored to scaffold ectodomains of different viral glycoproteins. We first designed and characterized homo-trimers from designed repeat proteins with N-terminal helices positioned to match the C termini of several viral glycoprotein trimers. Oligomers found to experimentally adopt the designed configuration were then used to generate nanoparticles with tetrahedral, octahedral, or icosahedral symmetry. Examples of all three target symmetries were experimentally validated by cryo-electron microscopy and several were assessed for their ability to display viral glycoproteins via genetic fusion. Electron microscopy and antibody binding experiments demonstrated that the designed nanoparticles display conformationally intact native-like HIV-1 Env, influenza hemagglutinin, and prefusion RSV F trimers in the predicted geometries. This work demonstrates that novel nanoparticle immunogens can be designed from the bottom up with atomic-level accuracy and provides a general strategy for precisely controlling epitope presentation and accessibility.

Download data

  • Downloaded 1,293 times
  • Download rankings, all-time:
    • Site-wide: 8,667 out of 100,737
    • In synthetic biology: 134 out of 919
  • Year to date:
    • Site-wide: 1,681 out of 100,737
  • Since beginning of last month:
    • Site-wide: 16,410 out of 100,737

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!