Metalign: Efficient alignment-based metagenomic profiling via containment min hash
By
Nathan LaPierre,
Mohammed Alser,
Eleazar Eskin,
David J Koslicki,
Serghei Mangul
Posted 18 Jan 2020
bioRxiv DOI: 10.1101/2020.01.17.910521
(published DOI: 10.1186/s13059-020-02159-0)
Whole-genome shotgun sequencing enables the analysis of microbial communities in unprecedented detail, with major implications in medicine and ecology. Predicting the presence and relative abundances of microbes in a sample, known as "metagenomic profiling", is a critical first step in microbiome analysis. Existing profiling methods have been shown to suffer from poor false positive or false negative rates, while alignment-based approaches are often considered accurate but computationally infeasible. Here we present a novel method, Metalign, that addresses these concerns by performing efficient alignment-based metagenomic profiling. We use a containment min hash approach to reduce the reference database size dramatically before alignment and a method to estimate organism relative abundances in the sample by resolving reads aligned to multiple genomes. We show that Metalign achieves significantly improved results over existing methods on simulated datasets from a large benchmarking study, CAMI, and performs well on in vitro mock community data and environmental data from the Tara Oceans project. Metalign is freely available at https://github.com/nlapier2/Metalign, along with the results and plots used in this paper, and a docker image is also available at https://hub.docker.com/repository/docker/nlapier2/metalign.
Download data
- Downloaded 866 times
- Download rankings, all-time:
- Site-wide: 40,511
- In bioinformatics: 4,080
- Year to date:
- Site-wide: 133,612
- Since beginning of last month:
- Site-wide: 141,232
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!