Rxivist logo

The structure and global distribution of the endoplasmic reticulum network is actively regulated by lysosomes

By Meng Lu, Francesca W. van Tartwijk, Julie Qiaojin Lin, Wilco Nijenhuis, Pierre Parutto, Marcus Fantham, Charles N. Christensen, Edward Avezov, Christine E. Holt, Alan Tunnacliffe, David Holcman, Lukas Kapitein, Gabriele Kaminski Schierle, Clemens F. Kaminski

Posted 15 Jan 2020
bioRxiv DOI: 10.1101/2020.01.15.907444

The endoplasmic reticulum (ER) comprises morphologically and functionally distinct domains, sheets and interconnected tubules. These domains undergo dynamic reshaping, in response to changes in the cellular environment. However, the mechanisms behind this rapid remodeling within minutes are largely unknown. Here, we report that ER remodeling is actively driven by lysosomes, following lysosome repositioning in response to changes in nutritional status. The anchorage of lysosomes to ER growth tips is critical for ER tubule elongation and connection. We validate this causal link via the chemo- and optogenetically driven re-positioning of lysosomes, which leads to both a redistribution of the ER tubules and its global morphology. Lysosomes sense metabolic change in the cell and regulate ER tubule distribution accordingly. Dysfunction in this mechanism during axonal extension may lead to axonal growth defects. Our results demonstrate a critical role of lysosome-regulated ER dynamics and reshaping in nutrient responses and neuronal development.

Download data

  • Downloaded 1,469 times
  • Download rankings, all-time:
    • Site-wide: 16,552
    • In cell biology: 490
  • Year to date:
    • Site-wide: 80,057
  • Since beginning of last month:
    • Site-wide: 70,864

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide