Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 62,502 bioRxiv papers from 277,505 authors.

Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established (e.g., ratio of intra to interchromosomal interactions) and novel (e.g., QuASAR-QC) measures to identify low quality experiments. In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundaje/3DChromatin_ReplicateQC to facilitate adoption in the community.

Download data

  • Downloaded 2,465 times
  • Download rankings, all-time:
    • Site-wide: 1,529 out of 62,502
    • In genomics: 345 out of 4,300
  • Year to date:
    • Site-wide: 4,101 out of 62,502
  • Since beginning of last month:
    • Site-wide: 13,204 out of 62,502

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide

Sign up for the Rxivist weekly newsletter! (Click here for more details.)