Rxivist logo

Background: Genome-wide DNA methylation (DNAm) profiling has allowed for the development of molecular predictors for a multitude of traits and diseases. Such predictors may be more accurate than the self-reported phenotypes, and could have clinical applications. Here, penalised regression models were used to develop DNAm predictors for body mass index (BMI), smoking status, alcohol consumption, and educational attainment in a cohort of 5,100 individuals. Using an independent test cohort comprising 906 individuals, the proportion of phenotypic variance explained in each trait was examined for DNAm-based and genetic predictors. Receiver operator characteristic curves were generated to investigate the predictive performance of DNAm-based predictors, using dichotomised phenotypes. The relationship between DNAm scores and all-cause mortality (n = 214 events) was assessed via Cox proportional-hazards models. Results: The DNAm-based predictors explained different proportions of the phenotypic variance for BMI (12%), smoking (60%), alcohol consumption (12%) and education (3%). The combined genetic and DNAm predictors explained 20% of the variance in BMI, 61% in smoking, 13% in alcohol consumption, and 6% in education. DNAm predictors for smoking, alcohol, and education but not BMI predicted mortality in univariate models. The predictors showed moderate discrimination of obesity (AUC=0.67) and alcohol consumption (AUC=0.75), and excellent discrimination of current smoking status (AUC=0.98). There was poorer discrimination of college-educated individuals (AUC=0.59). Conclusions: DNAm predictors correlate with lifestyle factors that are associated with health and mortality. They may supplement DNAm-based predictors of age to identify the lifestyle profiles of individuals and predict disease risk.

Download data

  • Downloaded 1,062 times
  • Download rankings, all-time:
    • Site-wide: 27,017
    • In genomics: 2,387
  • Year to date:
    • Site-wide: 86,218
  • Since beginning of last month:
    • Site-wide: 80,542

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide