BROCKMAN: Deciphering variance in epigenomic regulators by k-mer factorization
By
Carl G. de Boer,
Aviv Regev
Posted 21 Apr 2017
bioRxiv DOI: 10.1101/129247
(published DOI: 10.1186/s12859-018-2255-6)
Background: Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark. Results: BROCKMAN represents each sample as a vector of epigenomic-mark-associated DNA word frequencies, and decomposes the resulting matrix to find hidden structure in the data, followed by unsupervised grouping of samples and identification of the TFs that distinguish groups. Applied to single cell ATAC-seq, BROCKMAN readily distinguished cell types, treatments, batch effects, experimental artifacts, and cycling cells. We show that each variable component in the k-mer landscape reflects a set of co-varying TFs, which are often known to physically interact. For example, in K562 cells, AP-1 TFs were central determinant of variability in chromatin accessibility through their variable expression levels and diverse interactions with other TFs. We provide a theoretical basis for why cooperative TF binding - and any associated epigenomic mark - is inherently more variable than non-cooperative binding. Conclusions: BROCKMAN and related approaches will help gain a mechanistic understanding of the trans determinants of chromatin variability between cells, treatments, and individuals.
Download data
- Downloaded 1,285 times
- Download rankings, all-time:
- Site-wide: 12,625
- In genomics: 1,408
- Year to date:
- Site-wide: None
- Since beginning of last month:
- Site-wide: 118,935
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!