Integrating Predicted Transcriptome From Multiple Tissues Improves Association Detection
By
Alvaro N. Barbeira,
Milton D Pividori,
Jiamao Zheng,
Heather E Wheeler,
Dan L Nicolae,
Hae Kyung Im
Posted 31 Mar 2018
bioRxiv DOI: 10.1101/292649
(published DOI: 10.1371/journal.pgen.1007889)
Integration of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies is needed to improve our understanding of the biological mechanisms underlying GWAS hits, and our ability to identify therapeutic targets. Gene-level association test methods such as PrediXcan can prioritize candidate targets. However, limited eQTL sample sizes and absence of relevant developmental and disease context restricts our ability to detect associations. Here we propose an efficient statistical method that leverages the substantial sharing of eQTLs across tissues and contexts to improve our ability to identify potential target genes: MulTiXcan. MulTiXcan integrates evidence across multiple panels while taking into account their correlation. We apply our method to a broad set of complex traits available from the UK Biobank and show that we can detect a larger set of significantly associated genes than using each panel separately. To improve applicability, we developed an extension to work on summary statistics: S-MulTiXcan, which we show yields highly concordant results with the individual level version. Results from our analysis as well as software and necessary resources to apply our method are publicly available.
Download data
- Downloaded 952 times
- Download rankings, all-time:
- Site-wide: 43,041
- In genomics: 3,258
- Year to date:
- Site-wide: None
- Since beginning of last month:
- Site-wide: None
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!