Rxivist logo

Systematic evaluation of normalization methods for glycomics data based on performance of network inference

By Elisa Benedetti, Nathalie Gerstner, Maja Pučić-Baković, Toma Keser, Karli R. Reiding, L. Renee Ruhaak, Tamara Štambuk, Maurice H.J. Selman, Igor Rudan, Ozren Polašek, Caroline Hayward, Marian Beekman, Eline Slagboom, Manfred Wuhrer, Malcolm G Dunlop, Gordan Lauc, Jan Krumsiek

Posted 24 Oct 2019
bioRxiv DOI: 10.1101/814244 (published DOI: 10.3390/metabo10070271)

Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, we here quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms (LC-ESI-MS, UHPLC-FLD and MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the Probabilistic Quotient method followed by log-transformation, irrespective of the measurement platform.

Download data

  • Downloaded 258 times
  • Download rankings, all-time:
    • Site-wide: 101,114
    • In bioinformatics: 8,646
  • Year to date:
    • Site-wide: 95,370
  • Since beginning of last month:
    • Site-wide: 96,768

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

News