Rxivist logo

Absolute quantification of transcription factors reveals principles of gene regulation in erythropoiesis

By Mark A. Gillespie, Carmen G. Palii, Daniel Sanchez-Taltavull, Paul Shannon, William J.R. Longabaugh, Damien J. Downes, Karthi Sivaraman, Jim R. Hughes, Nathan D Price, Theodore J. Perkins, Jeffrey A Ranish, Marjorie Brand

Posted 21 Oct 2019
bioRxiv DOI: 10.1101/812123 (published DOI: 10.1016/j.molcel.2020.03.031)

Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). Yet, despite years of studies we still do not know the protein copy number of TFs in the nucleus. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first Gene Regulatory Network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that in the nucleus, corepressors are dramatically more abundant than coactivators at the protein, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.

Download data

  • Downloaded 995 times
  • Download rankings, all-time:
    • Site-wide: 26,518
    • In systems biology: 512
  • Year to date:
    • Site-wide: 40,436
  • Since beginning of last month:
    • Site-wide: 48,510

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide