Rxivist logo

Biophysical properties of intermediate states of EMT outperform both epithelial and mesenchymal states.

By Yoran Margaron, Tomoaki Nagai, Laurent Guyon, Laetitia Kurzawa, Anne-Pierre Morel, Alice Pinheiro, Laurent Blanchoin, Fabien Reyal, Alain Puisieux, Manuel Théry

Posted 08 Oct 2019
bioRxiv DOI: 10.1101/797654

Potential metastatic cells can dissociate from a primary breast tumor by undergoing an epithelial-to-mesenchymal transmission (EMT). Recent work has revealed that cells in intermediate states of EMT acquire an augmented capacity for tumor-cell dissemination. These states have been characterized by molecular markers, but the structural features and the cellular mechanisms that underlie the acquisition of their invasive properties are still unknown. Using human mammary epithelial cells, we generated cells in intermediate states of EMT through the induction of a single EMT-inducing transcription factor, ZEB1, and cells in a mesenchymal state by stimulation with TGFβ. In stereotypic and spatially-defined culture conditions, the architecture, internal organization and mechanical properties of cells in the epithelial, intermediate and mesenchymal state were measured and compared. We found that the lack of intercellular cohesiveness in epithelial and mesenchymal cells can be detected early by microtubule destabilization and the repositioning of the centrosome from the cell-cell junction to the cell center. Consistent with their high migration velocities, cells in intermediate states produced low contractile forces compared with epithelial and mesenchymal cells. The high contractile forces in mesenchymal cells powered a retrograde flow pushing the nucleus away from cell adhesion to the extracellular matrix. Therefore, cells in intermediate state had structural and mechanical properties that were distinct but not necessarily intermediate between epithelial and mesenchymal cells. Based on these observations, we found that a panel of triple-negative breast cancer lines had intermediate rather than mesenchymal characteristics suggesting that the structural and mechanical properties of the intermediate state are important for understanding tumor-cell dissemination.

Download data

  • Downloaded 759 times
  • Download rankings, all-time:
    • Site-wide: 20,289 out of 100,745
    • In cell biology: 876 out of 5,214
  • Year to date:
    • Site-wide: 18,294 out of 100,745
  • Since beginning of last month:
    • Site-wide: None out of 100,745

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!