Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 62,198 bioRxiv papers from 276,130 authors.

Early metabolic features of genetic liability to type 2 diabetes: cohort study with repeated metabolomics across early life

By Joshua A Bell, Caroline J. Bull, Marc J Gunter, David Carslake, George Davey Smith, Nicholas J. Timpson, Emma E Vincent

Posted 17 Sep 2019
bioRxiv DOI: 10.1101/767756

Background: Type 2 diabetes develops for many years before diagnosis. We aimed to reveal early metabolic features characterising liability to adult disease by examining genetic liability to adult type 2 diabetes in relation to detailed metabolic traits across early life. Methods and Findings: Data were from up to 4,761 offspring from the Avon Longitudinal Study of Parents and Children cohort. Linear models were used to examine effects of a genetic risk score (GRS, including 162 variants) for adult type 2 diabetes on 4 repeated measures of 229 traits from targeted nuclear magnetic resonance (NMR) metabolomics. These traits included lipoprotein subclass-specific cholesterol and triglyceride content, amino and fatty acids, inflammatory glycoprotein acetyls, and others, and were measured in childhood (age 8y), adolescence (age 16y), young-adulthood (age 18y), and adulthood (age 25y). For replication, two-sample Mendelian randomization (MR) was conducted using summary data from genome-wide association studies of metabolic traits from NMR in an independent sample of adults (N range 13,476 to 24,925; mean (SD) age range 23.9y (2.1y) to 61.3y (2.9y)). Among ALSPAC participants (49.7% male), the prevalence of type 2 diabetes was very low across time points (< 5 cases when first assessed at age 16y; 7 cases (0.4%) when assessed at age 25y). At age 8y, type 2 diabetes liability (per SD-higher GRS) was associated with lower lipids in high-density lipoprotein (HDL) particle subtypes - e.g. -0.03 SD (95% CI = -0.06, -0.003; P = 0.03) for total lipids in very-large HDL. At age 16y, associations remained strongest with lower lipids in HDL and became stronger with pre-glycemic traits including citrate (-0.06 SD, 95% CI = -0.09, -0.02; P = 1.41x10-03) and with glycoprotein acetyls (0.05 SD, 95% CI = 0.01, 0.08; P = 0.01). At age 18y, associations were stronger with branched chain amino acids including valine (0.06 SD; 95% CI = 0.02, 0.09; P = 1.24x10-03), while at age 25y, associations had strengthened with VLDL lipids and remained consistent with previously altered traits including HDL lipids. Results of two-sample MR in an independent sample of adults indicated persistent patterns of effect of type 2 diabetes liability, with higher type 2 diabetes liability positively associated with VLDL lipids and branched chain amino acid levels, and inversely associated with HDL lipids - again for large and very large HDL particularly (-0.004 SD (95% CI = -0.007, -0.002; P = 8.45x10-04) per 1 log odds of type 2 diabetes for total lipids in large HDL). Study limitations include modest sample sizes for ALSPAC analyses and limited coverage of protein and hormonal traits; insulin was absent as it is not quantified by NMR and not consistently available at each time point. Analyses were restricted to white-Europeans which reduced confounding by population structure but limited inference to other ethnic groups. Conclusions: Our results support perturbed HDL lipid metabolism as one of the earliest features of type 2 diabetes liability which precedes higher branched chain amino acid and inflammatory glycoprotein acetyl levels. This feature is apparent in childhood as early as age 8y, decades before the clinical onset of disease.

Download data

No bioRxiv download data for this paper yet.

Altmetric data


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News