Rxivist logo

IL-10 Promotes Endothelial Progenitor Cell Driven Wound Neovascularization and Enhances Healing via STAT3.

By Swathi Balaji, Emily Steen, Xinyi Wang, Hima V Vangapandu, Natalie Templeman, Alexander J Blum, Chad M Moles, Hui Li, Daria A. Narmoneva, Timothy M. Crombleholme, Manish J. Butte, Paul L. Bollyky, Sundeep G. Keswani

Posted 08 Sep 2019
bioRxiv DOI: 10.1101/760165

Evidence from prior studies of cutaneous trauma, burns, and chronic diabetic wound repair demonstrates that endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, anti-inflammatory reactions, tissue regeneration, and remodeling. We have shown that IL-10, a potent anti-inflammatory cytokine, promotes regenerative tissue repair in an adult model of dermal scar formation via the regulation of fibroblast-specific hyaluronan synthesis in a STAT3 dependent manner. While it is known that IL-10 drives EPC recruitment and neovascularization after myocardial infarction, its specific mode of action, particularly in dermal wound healing and neovascularization in both control and diabetic wounds remains to be defined. Here we show that IL-10 promotes EPC recruitment into the dermal wound microenvironment to facilitate neovascularization and wound healing of control and diabetic (db/db) wounds via vascular endothelial growth factor (VEGF) and stromal-cell derived factor 1 (SDF-1α) signaling. Inducible skin-specific STAT3 knockout (KO) mice were studied to determine whether the impact of IL-10 on the neovascularization and wound healing is STAT3 dependent. We found that IL-10 treatment significantly promotes dermal wound healing with enhanced wound closure, robust granulation tissue formation and neovascularization. This was associated with elevated wound EPC counts as well as increased VEGF and high SDF-1α levels in control mice, an effect that was abrogated in STAT3 KO transgenic mice. These findings were supported in vitro, wherein IL-10-enhanced VEGF and SDF-1α synthesis in primary murine dermal fibroblasts. IL-10-conditioned fibroblast media was shown to promote sprouting and network formation in aortic ring assays. We conclude that overexpression of IL-10 in the wound-specific milieu recruits EPCs and promote neovascularization, which occurs in a STAT3-dependent manner via regulation of VEGF and SDF-1α levels. Collectively, our studies demonstrate that IL-10 increases EPC recruitment leading to enhanced neovascularization and healing of dermal wounds.

Download data

  • Downloaded 315 times
  • Download rankings, all-time:
    • Site-wide: 102,283
    • In physiology: 911
  • Year to date:
    • Site-wide: 118,906
  • Since beginning of last month:
    • Site-wide: 91,318

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide