Rxivist logo

BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets

By Reinder Vos de Wael, Oualid Benkarim, Casey Paquola, Sara Lariviere, Jessica Royer, Shahin Tavakol, Ting Xu, Seok-Jun Hong, Sofie L. Valk, Bratislav Misic, Michael Peter Milham, William Gray-Roncal, Jonathan Smallwood, Boris C Bernhardt

Posted 08 Sep 2019
bioRxiv DOI: 10.1101/761460 (published DOI: 10.1038/s42003-020-0794-7)

Understanding how higher order cognitive function emerges from the underlying brain structure depends on quantifying how the behaviour of discrete regions are integrated within the broader cortical landscape. Recent work has established that this macroscale brain organization and function can be quantified in a compact manner through the use of multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. More generally, its macroscale perspective on brain organization offers novel possibilities to investigate the complex relationships between brain structure, function, and cognition in a quantified manner. Here, we present a compact workflow and open-access toolbox that allows for (i) the identification of gradients (from structural or functional imaging data), (ii) their alignment (across subjects or modalities), and (iii) their visualization (in embedding or cortical space). Our toolbox also allows for controlled association studies between gradients with other brain-level features, adjusted with respect to several null models that account for spatial autocorrelation. The toolbox is implemented in both Python and Matlab, programming languages widely used by the neuroimaging and network neuroscience communities. Several use-case examples and validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.

Download data

  • Downloaded 1,314 times
  • Download rankings, all-time:
    • Site-wide: 16,099
    • In neuroscience: 1,896
  • Year to date:
    • Site-wide: 78,095
  • Since beginning of last month:
    • Site-wide: 62,844

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide