Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders
By
Soeren Lukassen,
Foo Wei Ten,
Roland Eils,
Christian Conrad
Posted 20 Aug 2019
bioRxiv DOI: 10.1101/740415
Recent advances in single-cell RNA sequencing (scRNA-Seq) have driven the simultaneous measurement of the expression of 1,000s of genes in 1,000s of single cells. These growing data sets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogenous cell populations. Here, we propose an unsupervised deep neural network model that is a hybrid of matrix factorization and conditional variational autoencoders (CVA), which utilizes weights as matrix factorizations to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental batch effect correction, and static gene identification, which we conceptually prove here for three single-cell RNA-Seq datasets and suggest for future single-cell-gene analytics.
Download data
- Downloaded 1,152 times
- Download rankings, all-time:
- Site-wide: 17,076
- In bioinformatics: 2,058
- Year to date:
- Site-wide: 19,909
- Since beginning of last month:
- Site-wide: 30,436
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!