Rxivist logo

Learning quantitative sequence-function relationships from high-throughput biological data

By Gurinder S. Atwal, Justin B. Kinney

Posted 31 May 2015
bioRxiv DOI: 10.1101/020172 (published DOI: 10.1007/s10955-015-1398-3)

Understanding the transcriptional regulatory code, as well as other types of information encoded within biomolecular sequences, will require learning biophysical models of sequence-function relationships from high-throughput data. Controlling and characterizing the noise in such experiments, however, is notoriously difficult. The unpredictability of such noise creates problems for standard likelihood-based methods in statistical learning, which require that the quantitative form of experimental noise be known precisely. However, when this unpredictability is properly accounted for, important theoretical aspects of statistical learning which remain hidden in standard treatments are revealed. Specifically, one finds a close relationship between the standard inference method, based on likelihood, and an alternative inference method based on mutual information. Here we review and extend this relationship. We also describe its implications for learning sequence-function relationships from real biological data. Finally, we detail an idealized experiment in which these results can be demonstrated analytically.

Download data

  • Downloaded 519 times
  • Download rankings, all-time:
    • Site-wide: 34,546 out of 100,819
    • In bioinformatics: 4,374 out of 9,254
  • Year to date:
    • Site-wide: 95,611 out of 100,819
  • Since beginning of last month:
    • Site-wide: 84,534 out of 100,819

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!