Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 57,294 bioRxiv papers from 263,837 authors.

Mapping Vector Field of Single Cells

By Xiaojie Qiu, Yan Zhang, Dian Yang, Shayan Hosseinzadeh, Li Wang, Ruoshi Yuan, Song Xu, Yian Ma, Joseph Replogle, Spyros Darmanis, Jianhua Xing, Jonathan Weissman

Posted 09 Jul 2019
bioRxiv DOI: 10.1101/696724

Understanding how gene expression in single cells progress over time is vital for revealing the mechanisms governing cell fate transitions. RNA velocity, which infers immediate changes in gene expression by comparing levels of new (unspliced) versus mature (spliced) transcripts (La Manno et al. 2018), represents an important advance to these efforts. A key question remaining is whether it is possible to predict the most probable cell state backward or forward over arbitrary time-scales. To this end, we introduce an inclusive model (termed Dynamo) capable of predicting cell states over extended time periods, that incorporates promoter state switching, transcription, splicing, translation and RNA/protein degradation by taking advantage of scRNA-seq and the co-assay of transcriptome and proteome. We also implement scSLAM-seq by extending SLAM-seq to plate-based scRNA-seq (Hendriks et al. 2018; Erhard et al. 2019; Cao, Zhou, et al. 2019) and augment the model by explicitly incorporating the metabolic labelling of nascent RNA. We show that through careful design of labelling experiments and an efficient mathematical framework, the entire kinetic behavior of a cell from this model can be robustly and accurately inferred. Aided by the improved framework, we show that it is possible to reconstruct the transcriptomic vector field from sparse and noisy vector samples generated by single cell experiments. The reconstructed vector field further enables global mapping of potential landscapes that reflects the relative stability of a given cell state, and the minimal transition time and most probable paths between any cell states in the state space. This work thus foreshadows the possibility of predicting long-term trajectories of cells during a dynamic process instead of short time velocity estimates. Our methods are implemented as an open source tool, dynamo (https://github.com/aristoteleo/dynamo-release).

Download data

  • Downloaded 2,147 times
  • Download rankings, all-time:
    • Site-wide: 1,796 out of 57,294
    • In systems biology: 44 out of 1,638
  • Year to date:
    • Site-wide: 224 out of 57,294
  • Since beginning of last month:
    • Site-wide: 17 out of 57,294

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News