Rxivist logo

Lis1 activates dynein motility by pairing it with dynactin

By Mohamed M. Elshenawy, Emre Kusakci, Sara Volz, Janina Baumbach, Simon L Bullock, Ahmet Yildiz

Posted 28 Jun 2019
bioRxiv DOI: 10.1101/685826

Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules (MTs). It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 binding releases dynein from its auto-inhibited state and thereby promotes the formation of an active complex with dynactin. Lis1 also favors recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. These results provide a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargoes in cells.

Download data

  • Downloaded 495 times
  • Download rankings, all-time:
    • Site-wide: 37,043 out of 101,463
    • In biophysics: 1,452 out of 4,481
  • Year to date:
    • Site-wide: 39,167 out of 101,463
  • Since beginning of last month:
    • Site-wide: 79,035 out of 101,463

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!