Rxivist logo

Two distinct functional axes of positive feedback-enforced PRC2 recruitment in mouse embryonic stem cells

By Matteo Perino, Guido van Mierlo, Sandra M.T. Wardle, Hendrik Marks, Gert Jan C. Veenstra

Posted 14 Jun 2019
bioRxiv DOI: 10.1101/669960

Polycomb Repressive Complex 2 (PRC2) plays an essential role in development by catalysing trimethylation of histone H3 lysine 27 (H3K27me3), resulting in gene repression. PRC2 consists of two sub-complexes, PRC2.1 and PRC2.2, in which the PRC2 core associates with distinct ancillary subunits such as MTF2 and JARID2, respectively. Both MTF2, present in PRC2.1, and JARID2, present in PRC2.2, play a role in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs), however, it remains unclear how these distinct sub-complexes cooperate to establish Polycomb domains. Here, we combine a range of Polycomb mutant mESCs with chemical inhibition of PRC2 catalytic activity, to systematically dissect their relative contributions to PRC2 binding to target loci. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, which mutually reinforce binding. Part of the cross-talk between PRC2.1 and PRC2.2 occurs via their catalytic product H3K27me3, which is bound by the PRC2 core-subunit EED, thereby mediating positive feedback. Strikingly, removal of either JARID2 or H3K27me3 only has a minor effect on PRC2 recruitment, whereas their combined ablation largely attenuates PRC2 recruitment. This strongly suggests an unexpected redundancy between JARID2 and EED-H3K27me3-mediated recruitment of PRC2. Furthermore, we demonstrate that all core PRC2 recruitment occurs through the combined action of MTF2-mediated recruitment of PRC2.1 to DNA and PRC1-mediated recruitment of JARID2-containing PRC2.2. Both axes of binding are supported by EED-H3K27me3 positive feedback, but to a different degree. Finally, we provide evidence that PRC1 and PRC2 mutually reinforce reciprocal binding. Together, these data disentangle the interdependent and cooperative interactions between Polycomb complexes that are important to establish Polycomb repression at target sites.

Download data

  • Downloaded 530 times
  • Download rankings, all-time:
    • Site-wide: 33,919 out of 101,301
    • In molecular biology: 1,120 out of 3,516
  • Year to date:
    • Site-wide: 35,475 out of 101,301
  • Since beginning of last month:
    • Site-wide: 39,381 out of 101,301

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!