Rxivist logo

Integrated Identification of Disease Specific Pathways Using Multi-omics data

By Yingzhou Lu, Yi-Tan Chang, Eric P. Hoffman, Guoqiang Yu, David M. Herrington, Robert Clarke, Chiung-Ting Wu, Lulu Chen, Yue Wang

Posted 11 Jun 2019
bioRxiv DOI: 10.1101/666065

Motivation: Identification of biological pathways plays a central role in understanding both human health and diseases. Although much work has previously been done to explore the biological pathways by using single omics data, little effort has been reported using multi-omics data integration, mainly due to methodological and technological limitations. Compared to single omics data, multi-omics data will help identifying disease specific functional pathways with both higher sensitivity and specificity, thus gaining more comprehensive insights into the molecular architecture of disease processes. Results: In this paper, we propose two computational approaches that integrate multi-omics data and identify disease-specific biological pathways with high sensitivity and specificity. Applying our methods to an experimental multi-omics data dataset on muscular dystrophy subtypes, we identified disease-specific pathways of high biological plausibility. The developed methodology will likely have a broad impact on improving the molecular characterization of many common diseases.

Download data

  • Downloaded 429 times
  • Download rankings, all-time:
    • Site-wide: 31,353 out of 78,244
    • In bioinformatics: 4,039 out of 7,553
  • Year to date:
    • Site-wide: 21,268 out of 78,244
  • Since beginning of last month:
    • Site-wide: 21,890 out of 78,244

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)