Rxivist logo

A helminth chitinase structurally similar to mammalian chitinase displays immunomodulatory properties

By Friederike Ebner, Katja Balster, Katharina Janek, Agathe Niewienda, Piotr H. Malecki, Manfred S. Weiss, Tara E. Sutherland, Arnd Heuser, Anja A. Kühl, Jürgen Zentek, Andreas Hofmann, Susanne Hartmann

Posted 17 May 2019
bioRxiv DOI: 10.1101/641837

Previously, we reported significant immunomodulatory effects of the entire excretory-secretory (ES) proteins of the first larval stage (L1) of the gastrointestinal nematode Trichuris suis in a rodent model of allergic hyperreactivity. In the present study, we aimed to identify the proteins accounting for the modulatory effects of the T. suis L1 ES proteins and thus studied selected components for their immunomodulatory efficacy in an OVA-induced allergic airway disease model. In particular, an enzymatically active T. suis chitinase mediated amelioration of airway hyperreactivity, primarily associated with suppression of eosinophil recruitment into the lung. The three-dimensional structure of the T. suis chitinase as determined by high-resolution X-ray crystallography revealed significant similarities to mouse acidic mammalian chitinase (AMCase). In addition, the unique ability of T. suis chitinase to form dimers, as well as acidic surface patches within the dimerization region may contribute to the formation of cross-reactive antibodies to the mouse homologs. This hypothesis is supported by the observation that T. suis chitinase treatment induced cross-reactive antibodies to mouse AMCase and chitinase-like protein BRP-39 in the AHR model. In conclusion, a biologically active T. suis chitinase exhibits immunomodulatory properties despite its structural similarity to the mammalian counterpart.

Download data

  • Downloaded 357 times
  • Download rankings, all-time:
    • Site-wide: 93,320
    • In immunology: 2,814
  • Year to date:
    • Site-wide: 135,375
  • Since beginning of last month:
    • Site-wide: 91,789

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide