RICOPILI: Rapid Imputation for COnsortias PIpeLIne
By
Max Lam,
Swapnil Awasthi,
Hunna J. Watson,
Jackie Goldstein,
Georgia Maria Panagiotaropoulou,
Vassily Trubetskoy,
Robert Karlsson,
Oleksander Frei,
Chun-Chieh Fan,
Ward De Witte,
Nina Roth Mota,
Niamh Mullins,
Nora Skarabis,
Hailiang Huang,
Benjamin M Neale,
Mark Daly,
Manuel Mattheissen,
Raymond K Walters,
Stephan Ripke
Posted 11 Apr 2019
bioRxiv DOI: 10.1101/587196
(published DOI: 10.1093/bioinformatics/btz633)
Motivation: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open sourced Perl-based pipeline was developed to address the challenges of rapidly processing large scale multi-cohort GWAS studies including quality control, imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing (HPC) environments. Summary: RICOPILI was created as the Psychiatric Genomics Consortium (PGC) pipeline for GWAS and has been adopted by other users. The pipeline features i) technical and genomic quality control in case-control and trio cohorts ii) genome-wide phasing and imputation iv) association analysis v) meta-analysis vi) polygenic risk scoring and vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all of the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. Availability and Implementation: RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home .
Download data
- Downloaded 726 times
- Download rankings, all-time:
- Site-wide: 54,419
- In genetics: 2,109
- Year to date:
- Site-wide: 156,668
- Since beginning of last month:
- Site-wide: 144,897
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!