Rxivist logo

Inter-subject pattern analysis: a straightforward and powerful scheme for group-level MVPA.

By Qi Wang, Bastien Cagna, Thierry Chaminade, Sylvain Takerkart

Posted 25 Mar 2019
bioRxiv DOI: 10.1101/587899 (published DOI: 10.1016/j.neuroimage.2019.116205)

Multivariate pattern analysis (MVPA) has become vastly popular for analyzing functional neuroimaging data. At the group level, two main strategies are used in the literature. The standard one is hierarchical, combining the outcomes of within-subject decoding results in a second-level analysis. The alternative one, inter-subject pattern analysis, directly works at the group-level by using, e.g, a leave-one-subject-out cross-validation. This study provides a thorough comparison of these two group-level decoding schemes, using both a large number of artificial datasets where the size of the multivariate effect and the amount of inter-individual variability are parametrically controlled, as well as two real fMRI datasets comprising respectively 15 and 39 subjects. We show that these two strategies uncover distinct significant regions with partial overlap, and that inter-subject pattern analysis is able to detect smaller effects and to facilitate the interpretation. The core source code and data are openly available, allowing to fully reproduce most of these results.

Download data

  • Downloaded 316 times
  • Download rankings, all-time:
    • Site-wide: 88,846
    • In neuroscience: 13,514
  • Year to date:
    • Site-wide: 142,853
  • Since beginning of last month:
    • Site-wide: 124,051

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide