Rxivist logo

While the vertebrate brain appears largely bilaterally symmetrical in humans, it presents local morphological Left-Right (LR) asymmetries as, for instance, in the petalia. Moreover, higher functions such as speech or handedness are asymmetrically localized in the cortex. How these brain asymmetries are generated remains unknown. Here, we reveal a striking parallel between the control of bilateral symmetry in the brain and in the precursors of vertebrae called somites, where a default asymmetry is buffered by Retinoic Acid (RA) signaling. This mechanism is evident in zebrafish and mouse and, when perturbed in both species, it translates in the brain into lateralized alterations of patterning, neuronal differentiation and behavior. We demonstrate that altering levels of the mouse RA coactivator Rere results in subtle cortex asymmetry and profoundly altered handedness, linking patterning and function in the motor cortex. Together our data uncover a novel mechanism that could underlie the establishment of brain asymmetries and handedness in vertebrates.

Download data

  • Downloaded 614 times
  • Download rankings, all-time:
    • Site-wide: 22,179 out of 83,751
    • In neuroscience: 3,715 out of 14,933
  • Year to date:
    • Site-wide: 20,583 out of 83,751
  • Since beginning of last month:
    • Site-wide: 16,919 out of 83,751

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)