Rxivist logo

Unique structural features of the mitochondrial AAA+ protease AFG3L2 reveal the molecular basis for activity in health and disease

By Cristina Puchades, Bojian Ding, Albert Song, R. Luke Wiseman, Gabriel C. Lander, Steven E. Glynn

Posted 15 Feb 2019
bioRxiv DOI: 10.1101/551085 (published DOI: 10.1016/j.molcel.2019.06.016)

Mitochondrial AAA+ quality control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying molecular mechanisms that define the diverse activities of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic activity. Here, we used cryo-EM to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features within AFG3L2 that integrate with conserved structural motifs required for hand-over-hand ATP-dependent substrate translocation to engage, unfold and degrade targeted proteins. Mapping disease-relevant AFG3L2 mutations onto our structure demonstrates that many of these mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations, and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized, diverse biological functions.

Download data

  • Downloaded 958 times
  • Download rankings, all-time:
    • Site-wide: 13,936 out of 100,699
    • In molecular biology: 464 out of 3,492
  • Year to date:
    • Site-wide: 19,203 out of 100,699
  • Since beginning of last month:
    • Site-wide: 16,090 out of 100,699

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!