Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 57,294 bioRxiv papers from 263,837 authors.

Deconvoluting Stress-Responsive Proteostasis Signaling Pathways for Pharmacologic Activation using Targeted RNA-sequencing

By Julia M.D. Grandjean, Lars Plate, Richard I. Morimoto, Michael J. Bollong, Evan T Powers, Rockland Luke Wiseman

Posted 17 Dec 2018
bioRxiv DOI: 10.1101/499046 (published DOI: 10.1021/acschembio.9b00134)

Cellular proteostasis is maintained by stress-responsive signaling pathways such as the heat shock response (HSR), the oxidative stress response (OSR), and the unfolded protein response (UPR). Activation of these pathways results in the transcriptional upregulation of select subsets of stress-responsive genes that restore proteostasis and adapt cellular physiology to promote recovery following various types of acute insult. The capacity for these pathways to regulate cellular proteostasis makes them attractive therapeutic targets to correct proteostasis defects associated with diverse diseases. High-throughput screening (HTS) using cell-based reporter assays is highly effective for identifying putative activators of stress-responsive signaling pathways. However, the development of these compounds is hampered by the lack of medium-throughput assays to define compound potency and selectivity for a given pathway. Here, we describe a targeted RNA sequencing (RNAseq) assay that allows cost effective, medium-throughput screening of stress-responsive signaling pathway activation. We demonstrate that this assay allows deconvolution of stress-responsive signaling activated by chemical genetic or pharmacologic agents. Furthermore, we use this assay to define the selectivity of putative OSR and HSR activating compounds previously identified by HTS. Our results demonstrate the potential for integrating this adaptable targeted RNAseq assay into screening programs focused on developing pharmacologic activators of stress-responsive signaling pathways.

Download data

  • Downloaded 267 times
  • Download rankings, all-time:
    • Site-wide: 32,729 out of 57,294
    • In cell biology: 1,525 out of 2,718
  • Year to date:
    • Site-wide: 14,478 out of 57,294
  • Since beginning of last month:
    • Site-wide: 27,005 out of 57,294

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News