Rxivist logo

How spatial chromosome organization influences genome integrity is still poorly understood. Here we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities, are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CTCF/cohesin bound sites at the bases of chromatin loops and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias, are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hot spots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability, and are key contributors to the occurrence of genome rearrangements that drive cancer.

Download data

  • Downloaded 859 times
  • Download rankings, all-time:
    • Site-wide: 15,562 out of 94,912
    • In cell biology: 646 out of 4,894
  • Year to date:
    • Site-wide: 21,087 out of 94,912
  • Since beginning of last month:
    • Site-wide: 37,119 out of 94,912

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News