Rxivist logo

Objective There is increasing evidence for altered resting state functional connectivity (rsFC) in adolescents with disruptive behavior. Despite considerable ongoing behavioral research suggesting also important differences relating to reactive and proactive aggression, the corresponding rsFC correlates have not been studied to date. We therefore examined associations between these aggression subtypes along with subdimensions of callous-unemotional (CU) traits and rsFC using predefined seeds in aggression-related salience network (SN) and default mode network (DMN). Method Aggression subtype-specific whole-brain rsFC of SN and DMN seeds was investigated in a resting state sequence (mean acquisition time = 8 min 25 sec) acquired from 207 children and adolescents of both sexes aged 8 - 18 years (mean age (SD) = 13.30 (2.60) years; range = 8.02 – 18.35) in a multi-center study. One hundred eighteen individuals exhibited disruptive behavior (conduct disorder/oppositional defiant disorder) with different levels of comorbid ADHD symptoms, 89 were healthy. Results Compared to healthy controls, cases demonstrated reduced DMN and – after controlling for ADHD scores – SN seed-based rsFC with left hemispheric frontal clusters. We found increased and distinct aggression-subtype specific rsFC patterns. Specifically, reactive and proactive aggression correlated with distinct SN and DMN seed-based rsFC patterns. CU dimensions led to different DMN and SN rsFC with clusters including frontal, parietal, and cingulate areas. Conclusions This first study investigating reactive and proactive aggression along with CU dimensions reveals new subtype-specific whole-brain rsFC patterns in brain regions linked to processes like emotion, empathy, moral, and cognitive control.

Download data

  • Downloaded 585 times
  • Download rankings, all-time:
    • Site-wide: 63,007
    • In neuroscience: 9,009
  • Year to date:
    • Site-wide: 131,734
  • Since beginning of last month:
    • Site-wide: 155,711

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide