On the inference speed and video-compression robustness of DeepLabCut
By
Alexander Mathis,
Richard Warren
Posted 30 Oct 2018
bioRxiv DOI: 10.1101/457242
Pose estimation is crucial for many applications in neuroscience, biomechanics, genetics and beyond. We recently presented a highly efficient method for markerless pose estimation based on transfer learning with deep neural networks called DeepLabCut. Current experiments produce vast amounts of video data, which pose challenges for both storage and analysis. Here we improve the inference speed of DeepLabCut by up to tenfold and benchmark these updates on various CPUs and GPUs. In particular, depending on the frame size, poses can be inferred offline at up to 1200 frames per second (FPS). For instance, 278 x 278 images can be processed at 225 FPS on a GTX 1080 Ti graphics card. Furthermore, we show that DeepLabCut is highly robust to standard video compression (ffmpeg). Compression rates of greater than 1,000 only decrease accuracy by about half a pixel (for 640 x 480 frame size). DeepLabCut's speed and robustness to compression can save both time and hardware expenses.
Download data
- Downloaded 5,243 times
- Download rankings, all-time:
- Site-wide: 1,735
- In animal behavior and cognition: 11
- Year to date:
- Site-wide: 3,445
- Since beginning of last month:
- Site-wide: 3,445
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!