Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 73,897 bioRxiv papers from 321,562 authors.

N-terminal β-strand underpins biochemical specialization of an ATG8 isoform

By Erin K. Zess, Cassandra Jensen, Neftaly Cruz-Mireles, Juan Carlos De la Concepcion, Jan Sklenar, Richard Imre, Elisabeth Roitinger, Richard Hughes, Khaoula Belhaj, Karl Mechtler, Frank L.H. Menke, Tolga Bozkurt, Mark J Banfield, Sophien Kamoun, Abbas Maqbool, Yasin F. Dagdas

Posted 25 Oct 2018
bioRxiv DOI: 10.1101/453563 (published DOI: 10.1371/journal.pbio.3000373)

ATG8 is a highly-conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and numerous proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation followed by mass spectrometry, to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal β-strand -and, in particular, a single amino acid polymorphism- underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein′s ATG8 interacting motif. Additional proteomics experiments indicated that the N-terminal β-strand shapes the ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.

Download data

  • Downloaded 1,122 times
  • Download rankings, all-time:
    • Site-wide: 7,271 out of 73,850
    • In plant biology: 141 out of 2,207
  • Year to date:
    • Site-wide: 22,846 out of 73,850
  • Since beginning of last month:
    • Site-wide: 22,846 out of 73,850

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)