In silico investigation of coding variants potentially affecting the functioning of the glutamatergic N-methyl-D-aspartate receptor in schizophrenia
By
Antonia Tsavou,
David Curtis
Posted 27 Sep 2018
bioRxiv DOI: 10.1101/429258
(published DOI: 10.1097/YPG.0000000000000216)
Background: Several lines of evidence support the hypothesis that impaired function of the glutamatergic N-methyl-D-aspartate receptor (NMDAR) might be involved in the aetiology of schizophrenia. NMDAR is activated by phosphorylation by Fyn and there is also some evidence to suggest that abnormalities in Fyn functionality could also be involved in susceptibility to schizophrenia. In a recent weighted burden analysis of exome sequenced schizophrenia cases and controls we noted modest statistical evidence for an enrichment of rare, functional variants in FYN, GRIN1 and GRIN2B in schizophrenia cases. Aims: To test the plausibility of the hypothesis that schizophrenia susceptibility might be associated with genetic variants predicted to cause impaired functioning of NMDAR, either directly or indirectly through impairment of the kinases which phosphorylate it. Method: In an exome sequenced sample of 4225 schizophrenia cases and 5834 controls rare variants occurring in genes for the NMDAR subunits and for the kinases acting on it were annotated. The counts of disruptive and damaging variants were compared between cases and controls and the distribution of amino acids affected by damaging variants were visualised in ProteinPaint and the RCSB Protein Data Bank. Special attention was paid to tyrosine residues subject to phosphorylation. Results: There was no suggestion that abnormalities of the serine-threonine kinases or of Src were associated with schizophrenia. 3 cases and no controls had a disruptive variant in GRIN2A and 2 cases and no controls had a disruptive variant in FYN. 14 cases and 3 controls had damaging variants in FYN and all the variants in controls affected amino acid residues in the N-terminal region outside of any known functional domains. By contrast, 10 variants in cases affected amino acids in functional domains and in the 3D structure of Fyn two of the amino acid substitions, A376T and Q517E, were adjacent to each other. 8 cases and 1 control had damaging variants in GRIN1 but there was no obvious pattern with respect to particular functional domains being affected in this or other genes. A single case had a variant in GRIN2A affecting a well-supported phosphorylation site, Y943C, and three cases had a variant which produce an amino acid change, T216S, which lies two residues away from two adjacent well-supported phosphorylation sites in FYN. Aside from this, there was no suggestion that tyrosine phosphorylation sites in Fyn or NMDAR were affected. Conclusions: The numbers of variants involved are too small for firm conclusions to be drawn. The results are consistent with the hypothesis that about 0.5% of subjects with schizophrenia have disruptive or damaging genetic variants which could plausibly impair functioning of NMDAR directly or indirectly through impairing Fyn function.
Download data
- Downloaded 465 times
- Download rankings, all-time:
- Site-wide: 112,627
- In genetics: 4,216
- Year to date:
- Site-wide: 184,768
- Since beginning of last month:
- Site-wide: 179,444
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!