Rxivist logo

Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism

By Jorine M. Eeftens, Shveta Bisht, Jacob Kerssemakers, Christian H. Haering, Cees Dekker

Posted 15 Jun 2017
bioRxiv DOI: 10.1101/149138 (published DOI: 10.15252/embj.201797596)

Condensin, a conserved member of the SMC protein family of ring-shaped multi-subunit protein complexes, is essential for structuring and compacting chromosomes. Despite its key role, its molecular mechanism has remained largely unknown. Here, we employ single-molecule magnetic tweezers to measure, in real-time, the compaction of individual DNA molecules by the budding yeast condensin complex. We show that compaction proceeds in large (~200nm) steps, driving DNA molecules into a fully condensed state against forces of up to 2pN. Compaction can be reversed by applying high forces or adding buffer of high ionic strength. While condensin can stably bind DNA in the absence of ATP, ATP hydrolysis by the SMC subunits is required for rendering the association salt-insensitive and for subsequent compaction. Our results indicate that the condensin reaction cycle involves two distinct steps, where condensin first binds DNA through electrostatic interactions before using ATP hydrolysis to encircle the DNA topologically within its ring structure, which initiates DNA compaction. The finding that both binding modes are essential for its DNA compaction activity has important implications for understanding the mechanism of chromosome compaction.

Download data

  • Downloaded 1,018 times
  • Download rankings, all-time:
    • Site-wide: 13,030 out of 101,039
    • In biophysics: 420 out of 4,456
  • Year to date:
    • Site-wide: 80,930 out of 101,039
  • Since beginning of last month:
    • Site-wide: 90,676 out of 101,039

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!