Rxivist logo

Shear-induced nitric oxide production by endothelial cells

By K. Sriram, J. G. Laughlin, P. Rangamani, D. M. Tartakovsky

Posted 05 May 2016
bioRxiv DOI: 10.1101/051946

We present a biochemical model of the wall shear stress (WSS)-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell (EC). The model includes three key mechanotransducers: mechanosensing ion channels, integrins and G-protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphoryaltion of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an EC subjected to a step increase of WSS from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1 to 5 minutes) is followed by a sustained period of activation due to protein kinases.

Download data

  • Downloaded 407 times
  • Download rankings, all-time:
    • Site-wide: 45,521 out of 100,715
    • In systems biology: 1,323 out of 2,560
  • Year to date:
    • Site-wide: 76,047 out of 100,715
  • Since beginning of last month:
    • Site-wide: 60,924 out of 100,715

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!