Rxivist logo

LASSIM - a network inference toolbox for genome-wide mechanistic modeling

By Rasmus Magnusson, Guido Pio Mariotti, Mattias Köpsén, William Lövfors, Danuta R Gawel, Rebecka Jörnsten, Jörg Linde, Torbjörn Nordling, Elin Nyman, Sylvie Schulze, Colm E Nestor, Huan Zhang, Gunnar Cedersund, Mikael Benson, Andreas Tj&aumlrnberg, Mika Gustafsson

Posted 09 Mar 2017
bioRxiv DOI: 10.1101/115477 (published DOI: 10.1371/journal.pcbi.1005608)

Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is the first general mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady states and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. LASSIM models are built in two steps, where each step can integrate multiple data-types, and the method is implemented as a general-purpose toolbox using the PyGMo Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM first infers a non-linear ODE system of the pre-specified core genes. Second, LASSIM optimizes the parameters that models the regulation of peripheral genes by core-system genes in parallel. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naive Th2 differentiation, made possible by integrating Th2 specific bindings, time-series and six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We exemplified the advantage by inferring the first mechanistically motivated genome-wide model of the Th2 transcription regulatory system, which plays an important role in the progression of immune related diseases.

Download data

  • Downloaded 414 times
  • Download rankings, all-time:
    • Site-wide: 81,274
    • In systems biology: 1,848
  • Year to date:
    • Site-wide: 154,832
  • Since beginning of last month:
    • Site-wide: 156,357

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide