Rxivist logo

deepNF: Deep network fusion for protein function prediction

By Vladimir Gligorijević, Meet Barot, Richard Bonneau

Posted 22 Nov 2017
bioRxiv DOI: 10.1101/223339 (published DOI: 10.1093/bioinformatics/bty440)

The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provide a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that cannot capture complex and highly-nonlinear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting GO terms of varying type and specificity.

Download data

  • Downloaded 1,805 times
  • Download rankings, all-time:
    • Site-wide: 4,084 out of 85,215
    • In systems biology: 106 out of 2,243
  • Year to date:
    • Site-wide: 43,469 out of 85,215
  • Since beginning of last month:
    • Site-wide: 40,484 out of 85,215

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)