Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 62,734 bioRxiv papers from 278,354 authors.

Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen

By Marina Pais, Kentaro Yoshida, Artemis Giannakopoulou, Mathieu A. Pel, Liliana M. Cano, Ricardo F. Oliva, Kamil Witek, Hannele Lindqvist-Kreuze, Vivianne G. A. A. Vleeshouwers, Sophien Kamoun

Posted 11 Mar 2017
bioRxiv DOI: 10.1101/116012 (published DOI: 10.1186/s12862-018-1201-6)

Outbreaks caused by asexual lineages of fungal and oomycete pathogens are an expanding threat to crops, wild animals and natural ecosystems (Fisher et al. 2012, Kupferschmidt 2012). However, the mechanisms underlying genome evolution and phenotypic plasticity in asexual eukaryotic microbes remain poorly understood (Seidl and Thomma 2014). Ever since the 19th century Irish famine, the oomycete Phytophthora infestans has caused recurrent outbreaks on potato and tomato crops that have been primarily caused by the successive rise and migration of pandemic asexual lineages (Cooke et al. 2012, Yoshida et al. 2013, Yoshida et al. 2014). Here, we reveal patterns of genomic and gene expression variation within a P. infestans asexual lineage by compared sibling strains belonging to the South American EC-1 clone that has dominated Andean populations since the 1990s (Forbes et al. 1997, Oyarzun et al. 1998, Delgado et al. 2013, Yoshida et al. 2013, Yoshida et al. 2014). We detected numerous examples of structural variation, nucleotide polymorphisms and gene conversion within the EC-1 clone. Remarkably, 17 genes are not expressed in one of the two EC-1 isolates despite apparent absence of sequence polymorphisms. Among these, silencing of an effector gene was associated with evasion of disease resistance conferred by a potato immune receptor. These results highlight the exceptional genetic and phenotypic plasticity that underpins host adaptation in a pandemic clonal lineage of a eukaryotic plant pathogen.

Download data

  • Downloaded 881 times
  • Download rankings, all-time:
    • Site-wide: 8,675 out of 62,734
    • In plant biology: 178 out of 1,761
  • Year to date:
    • Site-wide: 50,944 out of 62,734
  • Since beginning of last month:
    • Site-wide: 48,629 out of 62,734

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News