Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 73,918 bioRxiv papers from 321,741 authors.

An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys

By Marilyn Parra, Ben W. Booth, Richard Weiszmann, Brian Yee, Gene W Yeo, James B Brown, Susan E Celniker, John G. Conboy

Posted 09 Mar 2018
bioRxiv DOI: 10.1101/258897 (published DOI: 10.1261/rna.066951.118)

During terminal erythropoiesis, the splicing machinery in differentiating erythroblasts executes a robust intron retention (IR) program that impacts expression of hundreds of genes. We studied IR mechanisms in the SF3B1 splicing factor gene, which expresses ~50% of its transcripts in late erythroblasts as a nuclear isoform that retains intron 4. RNA-seq analysis of nonsense-mediated decay (NMD)-inhibited cells revealed previously undescribed splice junctions, rare or not detected in normal cells, that connect constitutive exons 4 and 5 to highly conserved cryptic cassette exons within the intron. Minigene splicing reporter assays showed that these cassettes promote IR. Genome-wide analysis of splice junction reads demonstrated that cryptic noncoding cassettes are much more common in large (>1kb) retained introns than they are in small retained introns or in non-retained introns. Functional assays showed that heterologous cassettes can promote retention of intron 4 in the SF3B1 splicing reporter. Although many of these cryptic exons were spliced inefficiently, they exhibited substantial binding of U2AF1 and U2AF2 adjacent to their splice acceptor sites. We propose that these exons function as decoys that engage the intron-terminal splice sites, blocking cross-intron interactions required for excision. Developmental regulation of decoy function underlies a major component of the erythroblast IR program.

Download data

  • Downloaded 1,056 times
  • Download rankings, all-time:
    • Site-wide: 8,033 out of 73,960
    • In molecular biology: 250 out of 2,409
  • Year to date:
    • Site-wide: 22,848 out of 73,960
  • Since beginning of last month:
    • Site-wide: 22,848 out of 73,960

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)