Identification of positive selection in genes is greatly improved by using experimentally informed site-specific models
By
Jesse Bloom
Posted 22 Jan 2016
bioRxiv DOI: 10.1101/037689
(published DOI: 10.1186/s13062-016-0172-z)
Sites of positive selection are identified by comparing observed evolutionary patterns to those expected under a null model for evolution in the absence of such selection. For protein-coding genes, the most common null model is that nonsynonymous and synonymous mutations fix at equal rates; this unrealistic model has limited power to detect many interesting forms of selection. I describe a new approach that uses a null model based on high-throughput lab measurements of a gene's site-specific amino-acid preferences. This null model makes it possible to identify diversifying selection for amino-acid change and differential selection for mutations to amino acids that are unexpected given the measurements made in the lab. I show that this approach identifies sites of adaptive substitutions in four genes (lactamase, Gal4, influenza nucleoprotein, and influenza hemagglutinin) far better than a comparable method that simply compares the rates of nonsynonymous and synonymous substitutions. As rapid increases in biological data enable increasingly nuanced descriptions of the constraints on individual sites, approaches like the one here can improve our ability to identify many interesting forms of selection.
Download data
- Downloaded 1,390 times
- Download rankings, all-time:
- Site-wide: 11,942
- In evolutionary biology: 430
- Year to date:
- Site-wide: 57,560
- Since beginning of last month:
- Site-wide: 57,560
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!