Phenotypic variation in mitochondrial function across New Zealand snail populations
By
Emma S Greimann,
Samuel F. Ward,
James D Woodell,
Samantha Hennessey,
Michael R Kline,
Jorge A Moreno,
Madeline Peters,
Jennifer L Cruise,
Kristi L Montooth,
Maurine Neiman,
Joel Sharbrough
Posted 09 Dec 2017
bioRxiv DOI: 10.1101/230979
Mitochondrial function is critical for energy homeostasis and should shape how genetic variation in metabolism is transmitted through levels of biological organization to generate stability in organismal performance. Mitochondrial function is encoded by genes in two distinct and separately inherited genomes – the mitochondrial genome and the nuclear genome – and selection is expected to maintain functional mito-nuclear interactions. Nevertheless, high levels of polymorphism in genes involved in these mito-nuclear interactions and variation for mitochondrial function are nevertheless frequently observed, demanding an explanation for how and why variability in such a fundamental trait is maintained. Potamopyrgus antipodarum is a New Zealand freshwater snail with coexisting sexual and asexual individuals and, accordingly, contrasting systems of separate vs. co-inheritance of nuclear and mitochondrial genomes. As such, this snail provides a powerful means to dissect the evolutionary and functional consequences of mito-nuclear variation. The lakes inhabited by P. antipodarum span wide environmental gradients, with substantial across-lake genetic structure and mito-nuclear discordance. This situation allows us to use comparisons across reproductive modes and lakes to partition variation in cellular respiration across genetic and environmental axes. Here, we integrated cellular, physiological, and behavioral approaches to quantify variation in mitochondrial function across a diverse set of wild P. antipodarum lineages. We found extensive across-lake variation in organismal oxygen consumption, mitochondrial membrane potential, and behavioral response to heat stress, but few global effects of reproductive mode or sex. Taken together, our data set the stage for applying this important model system for sexual reproduction and polyploidy to dissecting the complex relationships between mito-nuclear variation, performance, plasticity, and fitness in natural populations.
Download data
- Downloaded 425 times
- Download rankings, all-time:
- Site-wide: 99,103
- In evolutionary biology: 4,663
- Year to date:
- Site-wide: 157,729
- Since beginning of last month:
- Site-wide: None
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!