Rxivist logo

Tracking the embryonic stem cell transition from ground state pluripotency

By Tüzer Kalkan, Nelly Olova, Mila Roode, Carla Mulas, Heather J. Lee, Isabelle Nett, Hendrik Marks, Rachael Walker, Hendrik G. Stunnenberg, Kathryn S. Lilley, Jennifer Nichols, Wolf Reik, Paul Bertone, Austin Smith

Posted 08 Dec 2016
bioRxiv DOI: 10.1101/092510 (published DOI: 10.1242/dev.142711)

Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition of ES cells. The population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naive pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state exhibit global transcriptome features consistent with features of early post-implantation epiblast and distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a discrete formative phase of pluripotency preparatory to lineage priming.

Download data

  • Downloaded 1,758 times
  • Download rankings, all-time:
    • Site-wide: 5,160 out of 100,737
    • In developmental biology: 92 out of 3,009
  • Year to date:
    • Site-wide: 19,436 out of 100,737
  • Since beginning of last month:
    • Site-wide: 20,384 out of 100,737

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!