Rxivist logo

Dynamics of sister chromatid resolution during cell cycle progression

By Rugile Stanyte, Johannes Nuebler, Claudia Blaukopf, Rudolf Hoefler, Roman Stocsits, Jan-Michael Peters, Daniel W. Gerlich

Posted 16 Mar 2018
bioRxiv DOI: 10.1101/283770 (published DOI: 10.1083/jcb.201801157)

Faithful genome transmission in dividing cells requires that the two copies of each chromosome's DNA package into separate, but physically linked, sister chromatids. The linkage between sister chromatids is mediated by cohesin, yet where sister chromatids are linked and how they resolve during cell cycle progression has remained unclear. Here, we investigated sister chromatid organization in live human cells using dCas9-mEGFP labelling of endogenous genomic loci. We detected substantial sister locus separation during G2 phase, irrespective of the proximity to cohesin enrichment sites. Almost all sister loci separated within a few hours after their respective replication, and then rapidly equilibrated their average distances within dynamic chromatin polymers. Our findings explain why the topology of sister chromatid resolution in G2 largely reflects the DNA replication program. Further, these data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells. Rather, cohesion might occur at variable genomic positions within the cell population.

Download data

  • Downloaded 1,149 times
  • Download rankings, all-time:
    • Site-wide: 10,392 out of 100,699
    • In cell biology: 392 out of 5,210
  • Year to date:
    • Site-wide: 50,554 out of 100,699
  • Since beginning of last month:
    • Site-wide: 31,905 out of 100,699

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!