Rxivist logo

Martsolf syndrome is characterized by congenital cataracts, postnatal microcephaly, developmental delay, hypotonia, short stature and biallelic hypomorphic mutations in either RAB3GAP1 or RAB3GAP2. Through genetic analysis of 85 unrelated “mutation negative” probands referred with Martsolf syndrome we identified two individuals with different homozygous null mutations in ITPA, the gene encoding inosine triphosphate pyrophosphatase (ITPase). The probands reported here each presented with a lethal and highly distinctive disorder; Martsolf syndrome with infantile-onset dilated cardiomyopathy. Severe ITPase-deficiency has been previously reported with infantile epileptic encephalopathy (MIM 616647). ITPase acts to prevent incorporation of inosine bases (rI/dI) into RNA and DNA. In Itpa-null cells, dI was undetectable in genomic DNA. dI could be identified at a low level in mtDNA but this was not associated with detectable mitochondrial genome instability, mtDNA depletion or biochemical dysfunction of the mitochondria. rI accumulation was detectable in lymphoblastoid RNA from an affected individual. In Itpa-null mouse embryos rI was detectable in the brain and kidney with the highest level seen in the embryonic heart (rI at 1 in 385 bases). Transcriptome and proteome analysis in mutant cells revealed no major differences with controls. The rate of transcription and the total amount of cellular RNA also appeared normal. rI accumulation in RNA – and by implication rI production - correlates with the severity of organ dysfunction in ITPase deficiency but the basis of the cellulopathy remains cryptic. While we cannot exclude cumulative minor effects, there are no major anomalies in the production, processing, stability and/or translation of mRNA.

Download data

  • Downloaded 438 times
  • Download rankings, all-time:
    • Site-wide: 76,766
    • In genetics: 3,297
  • Year to date:
    • Site-wide: 113,481
  • Since beginning of last month:
    • Site-wide: 124,956

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide